快速开始¶
本指南将帮助你搭建 RecStore 的开发和运行环境,相关步骤出现错误可以查看 FAQ。
1. 环境准备¶
RecStore 推荐使用 Docker 进行环境配置。在开始之前,请确保你的系统已安装以下工具:
Ubuntu 快速安装脚本¶
如果你使用的是 Ubuntu 系统,可以使用以下命令快速安装 Docker 和 NVIDIA Container Toolkit:
# 1. 安装 Docker
curl -fsSL https://get.docker.com | sudo sh
# 2. 安装 NVIDIA Container Toolkit
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
2. 获取代码¶
克隆 RecStore 仓库并更新子模块:
git clone https://github.com/RecStore/RecStore.git
cd RecStore
git submodule update --init --recursive
3. 构建 Docker 镜像¶
进入 dockerfiles 目录并构建镜像:
4. 启动容器¶
你可以使用以下命令启动容器。请务必根据你的实际环境修改路径映射 ( -v 选项)。
RECSTORE_PATH="$(cd .. && pwd)" \
sudo docker run --cap-add=SYS_ADMIN --privileged \
--security-opt seccomp=unconfined --runtime=nvidia \
--name recstore --net=host \
-v ${RECSTORE_PATH}:${RECSTORE_PATH} \
-v /dev/shm:/dev/shm \
-v /dev/hugepages:/dev/hugepages \
-v /dev:/dev \
-w ${RECSTORE_PATH} \
--rm -it --gpus all -d recstore
或者使用我们提供的脚本(需修改脚本内的变量):
进入容器:
5. 容器内环境初始化¶
进入容器后,运行以下脚本进行一键初始化:
# 安装 PyTorch with cxx11abi
cd binary
# pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple torch-2.5.0a0+git*.whl
# 初始化环境依赖
cd ../dockerfiles
bash init_env_inside_docker.sh > init_env.log 2>&1
PyTorch with cxx11abi
RecStore 项目依赖于 PyTorch with cxx11abi,需要自行构建,你可以参考 项目提供的脚本 来安装。
6. 编译 RecStore¶
最后,编译项目: